
AWS Key Management Service
Cryptographic Details

August 2018

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 2 of 42

© 2018, Amazon Web Services, Inc. or its affiliates. All rights reserved.

Notices
This document is provided for informational purposes only. It represents the

current AWS product offerings and practices as of the date of issue of this

document, which are subject to change without notice. Customers are responsible

for making their own independent assessment of the information in this

document. Any use of AWS products or services is provided “as is” without

warranty of any kind, whether express or implied. This document does not create

any warranties, representations, contractual commitments, conditions or

assurances from AWS, its affiliates, suppliers, or licensors. The responsibilities

and liabilities of AWS to its customers are controlled by AWS agreements, and

this document is not part of, nor does it modify, any agreement between AWS

and its customers.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 3 of 42

Contents

Abstract 4

Introduction 4

Design Goals 6

Background 7

Cryptographic Primitives 7

Basic Concepts 10

Customer’s Key Hierarchy 11

Use Cases 13

Amazon EBS Volume Encryption 13

Client-side Encryption 15

Customer Master Keys 17

Imported Master Keys 19

Enable and Disable Key 22

Key Deletion 22

Rotate Customer Master Key 23

Customer Data Operations 23

Generating Data Keys 24

Encrypt 26

Decrypt 26

Re-Encrypting an Encrypted Object 28

Domains and the Domain State 29

Domain Keys 30

Exported Domain Tokens 30

Managing Domain State 31

Internal Communication Security 33

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 4 of 42

HSM Security Boundary 33

Quorum-Signed Commands 34

Authenticated Sessions 35

Durability Protection 36

References 38

Appendix - Abbreviations and Keys 40

Abbreviations 40

Keys 41

Contributors 42

Document Revisions 42

Abstract
AWS Key Management Service (AWS KMS) provides cryptographic keys and

operations secured by FIPS 140-2 [1] certified hardware security modules

(HSMs) scaled for the cloud. AWS KMS keys and functionality are used by

multiple AWS Cloud services, and you can use them to protect data in your

applications. This whitepaper provides details on the cryptographic operations

that are executed within AWS when you use AWS KMS.

Introduction
AWS KMS provides a web interface to generate and manage cryptographic keys

and operates as a cryptographic service provider for protecting data. AWS KMS

offers traditional key management services integrated with AWS services to

provide a consistent view of customers’ keys across AWS, with centralized

management and auditing. This whitepaper provides a detailed description of the

cryptographic operations of AWS KMS to assist you in evaluating the features

offered by the service.

AWS KMS includes a web interface through the AWS Management Console,

command line interface, and RESTful API operations to request cryptographic

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 5 of 42

operations of a distributed fleet of FIPS 140-2 validated hardware security

modules (HSM)[1]. The AWS Key Management Service HSM is a multichip

standalone hardware cryptographic appliance designed to provide dedicated

cryptographic functions to meet the security and scalability requirements of AWS

KMS. You can establish your own HSM-based cryptographic hierarchy under

keys that you manage as customer master keys (CMKs). These keys are made

available only on the HSMs for the necessary cycles needed to process your

cryptographic request. You can create multiple CMKs, each represented by its key

ID. You can define access controls on who can manage and/or use CMKs by

creating a policy that is attached to the key. This allows you to define application-

specific uses for your keys for each API operation.

Figure 1: AWS KMS architecture

AWS KMS is a tiered service consisting of web-facing KMS hosts and a tier of

HSMs. The grouping of these tiered hosts forms the AWS KMS stack. All requests

to AWS KMS must be made over the Transport Layer Security protocol (TLS) and

terminate on an AWS KMS host. AWS KMS hosts only allow TLS with a

ciphersuite that provides perfect forward secrecy [2]. The AWS KMS hosts use

protocols and procedures defined within this whitepaper to fulfill those requests

through the HSMs. AWS KMS authenticates and authorizes your requests using

the same credential and policy mechanisms that are available for all other AWS

API operations, including AWS Identity and Access Management (IAM).

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 6 of 42

Design Goals
AWS KMS is designed to meet the following requirements.

Durability: The durability of cryptographic keys is designed to equal that of the

highest durability services in AWS. A single cryptographic key can encrypt large

volumes of customer data accumulated over a long time period. However, data

encrypted under a key becomes irretrievable if the key is lost.

Quorum-based access: Multiple Amazon employees with role-specific access

are required to perform administrative actions on the HSMs. There is no

mechanism to export plaintext CMKs. The confidentiality of your cryptographic

keys is crucial.

Access control: Use of keys is protected by access control policies defined and

managed by you.

Low-latency and high throughput: AWS KMS provides cryptographic

operations at latency and throughput levels suitable for use by other services in

AWS.

Regional independence: AWS provides regional independence for customer

data. Key usage is isolated within an AWS Region.

Secure source of random numbers: Because strong cryptography depends

on truly unpredictable random number generation, AWS provides a high-quality

and validated source of random numbers.

Audit: AWS records the use of cryptographic keys in AWS CloudTrail logs. You

can use AWS CloudTrail logs to inspect use of your cryptographic keys, including

use of keys by AWS services on your behalf.

To achieve these goals, the AWS KMS system includes a set of KMS operators and

service host operators (collectively, “operators”) that administer “domains.” A

domain is a regionally defined set of AWS KMS servers, HSMs, and operators.

Each KMS operator has a hardware token that contains a private and public key

pair used to authenticate its actions. The HSMs have an additional private and

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 7 of 42

public key pair to establish encryption keys that protect HSM state

synchronization.

This whitepaper illustrates how the AWS KMS protects your keys and other data

that you want to encrypt. Throughout this document, encryption keys or data you

want to encrypt are referred to as “secrets” or “secret material.”

Background
This section contains a description of the cryptographic primitives and where

they are used. In addition, it introduces the basic elements of AWS KMS.

Cryptographic Primitives
AWS KMS uses configurable cryptographic algorithms so that the system can

quickly migrate from one approved algorithm, or mode, to another. The initial

default set of cryptographic algorithms has been selected from Federal

Information Processing Standard (FIPS-approved) algorithms for their security

properties and performance.

Entropy and Random Number Generation

AWS KMS key generation is performed on the KMS HSMs. The HSMs implement

a hybrid random number generator that uses the NIST SP800-90A Deterministic

Random Bit Generator (DRBG) CTR_DRBG using AES-256[3]. It is seeded with

a nondeterministic random bit generator with 384-bits of entropy and updated

with additional entropy to provide prediction resistance on every call for

cryptographic material.

Encryption

All symmetric key encrypt commands used within HSMs use the Advanced

Encryption Standards (AES) [4], in Galois Counter Mode (GCM) [5] using 256-

bit keys. The analogous calls to decrypt use the inverse function.

AES-GCM is an authenticated encryption scheme. In addition to encrypting

plaintext to produce ciphertext, it computes an authentication tag over the

ciphertext and any additional data over which authentication is required

(additionally authenticated data, or AAD). The authentication tag helps ensure

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 8 of 42

that the data is from the purported source and that the ciphertext, and AAD, have

not been modified.

Frequently, AWS omits the inclusion of the AAD in our descriptions, especially

when referring to the encryption of data keys. It is implied by surrounding text in

these cases that the structure to be encrypted is partitioned between the plaintext

to be encrypted and the cleartext AAD to be protected.

AWS KMS provides an option for you to import CMK key material instead of

relying on the service to generate the key. This imported key material can be

encrypted using RSAES-PKCS1-v1_5 or RSAES-OAEP [6] to protect the key

during transport to the KMS HSM. The RSA key pairs are generated on KMS

HSMs. The imported key material is decrypted on a KMS HSM, and reencrypted

under AES-GCM before being stored by the service.

Key Derivation Functions

A key derivation function is used to derive additional keys from an initial secret

or key. AWS KMS uses a key derivation function (KDF) to derive per-call keys for

every encryption under a CMK. All KDF operations use the KDF in counter mode

[7] using HMAC [FIPS197][8] with SHA256 [FIPS180] [9]. The 256-bit derived

key is used with AES-GCM to encrypt or decrypt customer data and keys.

Digital Signatures

All service entities have an elliptic curve digital signature algorithm (ECDSA) key

pair. They perform ECDSA as defined in Use of Elliptic Curve Cryptography

(ECC) Algorithms in Cryptographic Message Syntax (CMS)[10] and X9.62-2005:

Public Key Cryptography for the Financial Services Industry: The Elliptic Curve

Digital Signature Algorithm (ECDSA)[11]. The entities use the secure hash

algorithm defined in Federal Information Processing Standards Publications,

FIPS PUB 180-4 [9], known as SHA384. The keys are generated on the curve

secp384r1 (NIST-P384) [12].

Digital signatures are used to authenticate commands and communications

between AWS KMS entities. A key pair is denoted as (d, Q), the signing operation

as Sig = Sign(d, msg), and the verify operation as Verify(Q, msg, Sig). The verify

operation returns an indication of success or failure.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 9 of 42

It is frequently convenient to represent an entity by its public key Q. In these

cases, the identifying information, such as an identifier or a role, is assumed to

accompany the public key.

Key Establishment

AWS KMS uses two different key establishment methods. The first is defined as

C(1, 2, ECC DH) in Recommendation for Pair-Wise Key Establishment Schemes

Using Discrete Logarithm Cryptography (Revision 2) [13]. This scheme has an

initiator with a static signing key. The initiator generates and signs an ephemeral

elliptic curve Diffie-Hellman (ECDH) key, intended for a recipient with a static

ECDH agreement key. This method uses one ephemeral key and two static keys

using ECDH. That is the derivation of the label C(1, 2, ECC DH). This method is

sometimes called one-pass ECDH.

The second key establishment method is C(2, 2, ECC, DH) [13]. In this scheme,

both parties have a static signing key, and they generate, sign, and exchange an

ephemeral ECDH key. This method uses two static keys and two ephemeral keys

using ECDH. That is the derivation of the label C(2, 2, ECC, DH). This method is

sometimes called ECDH ephemeral or ECDHE. All ECDH keys are generated on

the curve secp384r1 (NIST-P384) [12].

Envelope Encryption

A basic construction used within many cryptographic systems is envelope

encryption. Envelope encryption uses two or more cryptographic keys to secure a

message. Typically, one key is derived from a longer-term static key k, and

another key is a per-message key, msgKey, which is generated to encrypt the

message. The envelope is formed by encrypting the message, ciphertext =

Encrypt(msgKey, message), encrypting the message key with the long-term

static key, encKey = Encrypt(k, msgKey), and packaging the two values (encKey,

ciphertext) into a single structure, or envelope encrypted message.

The recipient, with access to k, can open the enveloped message by first

decrypting the encrypted key and then decrypting the message.

AWS KMS provides the ability to manage these longer-term static keys and

automate the process of envelope encryption of your data.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 10 of 42

AWS KMS uses envelope encryption internally to secure confidential material

between service endpoints.

In addition to the encryption capabilities provided within the KMS service, the

AWS Encryption SDK [14] provides client-side envelope encryption libraries. You

can use these libraries to protect your data and the encryption keys used to

encrypt that data.

Basic Concepts
This section introduces some basic AWS KMS concepts that are elaborated on

throughout this whitepaper.

Customer master key (CMK): A logical key that represents the top of your

key hierarchy. A CMK is given an Amazon Resource Name (ARN) that includes a

unique key identifier, or key ID.

Alias: A user-friendly name, or alias, can be associated with a CMK. The alias

can be used interchangeably with key ID in many of the AWS KMS API

operations.

Permissions: A policy attached to a CMK that defines permissions on the key.

The default policy allows any principals that you define, as well as allowing the

AWS account root user to add IAM policies that reference the key.

Grants: Grants are intended to allow delegated use of CMKs when the duration

of usage is not known at the outset. One use of grants is to define scoped-down

permissions for an AWS service. The service uses your key to do asynchronous

work on your behalf on encrypted data in the absence of a direct-signed API call

from you.

Data keys: Cryptographic keys generated on HSMs under a CMK. AWS KMS

allows authorized entities to obtain data keys protected by a CMK. They can be

returned both as plaintext (unencrypted) data keys and as encrypted data keys.

Ciphertexts: Encrypted output of AWS KMS is referred to as customer

ciphertext or just ciphertext when there is no confusion. Ciphertext contains

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 11 of 42

encrypted data with additional information that identifies the CMK to use in the

decryption process.

Encryption context: A key–value pair map of additional information

associated with AWS KMS–protected information. AWS KMS uses authenticated

encryption to protect data keys. The encryption context is incorporated into the

AAD of the authenticated encryption in AWS KMS–encrypted ciphertexts. This

context information is optional and not returned when requesting a key (or an

encryption operation). But if used this context value is required to successfully

complete a decryption operation. An intended use of the encryption context is to

provide additional authenticated information that can be used to enforce policies

and be included in the AWS CloudTrail logs. For example, a key–value pair of

{"key name":"satellite uplink key"} could be used to name the data key.

Subsequently, whenever the key is used, a AWS CloudTrail entry is made that

includes “key name”: “satellite uplink key.” This additional information can

provide useful context to understand why a given master key was used.

Customer’s Key Hierarchy
Your key hierarchy starts with a top-level logical key, a CMK. A CMK represents a

container for top-level key material and is uniquely defined within the AWS

service namespace with an ARN. The ARN includes a uniquely generated key

identifier, a CMK key ID. A CMK is created based on a user-initiated request

through AWS KMS. Upon reception, AWS KMS requests the creation of an initial

HSM backing key (HBK) to be placed into the CMK container. All such HSM-

resident-only keys are denoted in red. The HBK is generated on an HSM in the

domain and is designed never to be exported from the HSM in plaintext. Instead,

the HBK is exported encrypted under HSM-managed domain keys. These

exported HBKs are referred to as exported key tokens (EKTs).

The EKT is exported to a highly durable, low-latency storage. You receive an ARN

to the logical CMK. This represents the top of a key hierarchy, or cryptographic

context, for you. You can create multiple CMKs within your account and set

policies on your CMKs like any other AWS-named resource.

Within the hierarchy of a specific CMK, the HBK can be thought of as a version of

the CMK. When you want to rotate the CMK through AWS KMS, a new HBK is

created and associated with the CMK as the active HBK for the CMK. The older

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 12 of 42

HBKs are preserved and can be used to decrypt and verify previously protected

data, but only the active cryptographic key can be used to protect new

information.

Figure 2: CMK hierarchy

You can make requests through AWS KMS to use your CMKs to directly protect

information or request additional HSM-generated keys protected under your

CMK. These keys are called customer data keys, or CDKs. CDKs can be returned

encrypted as ciphertext (CT), in plaintext, or both. All objects encrypted under a

CMK (either customer-supplied data or HSM-generated keys) can be decrypted

only on an HSM via a call through AWS KMS.

The returned ciphertext, or the decrypted payload, is never stored within AWS

KMS. The information is returned to you over your TLS connection to AWS KMS.

This also applies to calls made by AWS services on your behalf.

We summarize the key hierarchy and the specific key properties in the following

table.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 13 of 42

Key Description Lifecycle

Domain key A 256-bit AES-GCM key only in memory of an HSM used

to wrap versions of the CMKs, the HSM backing keys.

Rotated daily1

HSM backing key A 256-bit symmetric key only in memory of an HSM used

to protect customer data and keys. Stored encrypted

under domain keys

Rotated yearly2

(optional config.)

Data encryption key A 256-bit AES-GCM key only in memory of an HSM used

to encrypt customer data and keys. Derived from an HBK

for each encryption.

Used once per

encrypt, and

regenerated on

decrypt

Customer data key User-defined key exported from HSM in plaintext and

ciphertext. Encrypted under an HSM backing key and

returned to authorized users over TLS channel.

Rotation and use

controlled by

application

Use Cases
This whitepaper presents two use cases. The first demonstrates how AWS KMS

performs server-side encryption with CMKs on an Amazon Elastic Block Store

(Amazon EBS) volume. The second is a client-side application that demonstrates

how you can use envelope encryption to protect content with AWS KMS.

Amazon EBS Volume Encryption
Amazon EBS offers volume encryption capability. Each volume is encrypted

using AES-256-XTS [15]. This requires two 256-bit volume keys, which you can

think of as one 512-bit volume key. The volume key is encrypted under a CMK in

your account. For Amazon EBS to encrypt a volume for you, it must have access

to generate a volume key (VK) under a CMK in the account. You do this by

providing a grant for Amazon EBS to the CMK to create data keys and to encrypt

and decrypt these volume keys. Now Amazon EBS uses AWS KMS with a CMK to

generate AWS KMS–encrypted volume keys.

1 AWS KMS may from time to time relax domain key rotation to at most weekly to

account for domain administration and configuration tasks.

2 Default service master keys created and managed by AWS KMS on your behalf are

automatically rotated every 3 years.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 14 of 42

Figure 3: Amazon EBS volume encryption with AWS KMS keys

Encrypting data being written to an Amazon EBS volume involves five steps:

1. Amazon EBS obtains an encrypted volume key under a CMK through AWS

KMS over a TLS session and stores the encrypted key with the volume

metadata.

2. When the Amazon EBS volume is mounted, the encrypted volume key is

retrieved.

3. A call to AWS KMS over TLS is made to decrypt the encrypted volume key.

AWS KMS identifies the CMK and makes an internal request to an HSM in

the fleet to decrypt the encrypted volume key. AWS KMS then returns the

volume key back to the Amazon Elastic Compute Cloud (Amazon EC2)

host that contains your instance over the TLS session.

4. The volume key is used to encrypt and decrypt all data going to and from

the attached Amazon EBS volume. Amazon EBS retains the encrypted

volume key for later use in case the volume key in memory is no longer

available.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 15 of 42

Client-side Encryption
The AWS Encryption SDK [14] includes an API operation for performing

envelope encryption using a CMK from AWS KMS. For complete

recommendations and usage details see the related documentation [14]. Client

applications can use the AWS Encryption SDK to perform envelope encryption

using AWS KMS.

// Instantiate the SDK

final AwsCrypto crypto = new AwsCrypto();

// Set up the KmsMasterKeyProvider backed by the default credentials

final KmsMasterKeyProvider prov = new KmsMasterKeyProvider(keyId);

// Do the encryption

final byte[] ciphertext = crypto.encryptData(prov, message);

The client application can execute the following steps:

1. A request is made under a CMK for a new data key. An encrypted data key

and a plaintext version of the data key are returned.

2. Within the AWS Encryption SDK, the plaintext data key is used to encrypt

the message. The plaintext data key is then deleted from memory.

3. The encrypted data key and encrypted message are combined into a single

ciphertext byte array.

Figure 4: AWS Encryption SDK envelope encryption

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 16 of 42

The envelope-encrypted message can be decrypted using the decrypt

functionality to obtain the originally encrypted message.

final AwsCrypto crypto = new AwsCrypto();

final KmsMasterKeyProvider prov = new KmsMasterKeyProvider(keyId);

// Decrypt the data

final CryptoResult<byte[], KmsMasterKey> res =

crypto.decryptData(prov, ciphertext);

// We need to check the master key to ensure that the

// assumed key was used

if (!res.getMasterKeyIds().get(0).equals(keyId)) {

 throw new IllegalStateException("Wrong key id!");

}

byte[] plaintext = res.getResult();

1. The AWS Encryption SDK parses the envelope-encrypted message to

obtain the encrypted data key and make a request to AWS KMS to decrypt

the data key.

2. The AWS Encryption SDK receives the plaintext data key from AWS KMS.

3. The data key is then used to decrypt the message, returning the initial

plaintext.

Figure 5: AWS Encryption SDK envelope decryption

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 17 of 42

Customer Master Keys
A CMK refers to a logical key that may refer to one or more HBKs. It is generated

as a result of a call to the CreateKey API call.

The following is the CreateKey request syntax.

{

 "Description": "string",

 "KeyUsage": "string",

 “Origin”: “string”;

 "Policy": "string"

}

The request accepts the following data in JSON format.

Optional Description: Description of the key. We recommend that you choose

a description that helps you decide whether the key is appropriate for a task.

Optional KeyUsage: Specifies the intended use of the key. Currently this

defaults to “ENCRYPT/DECRYPT”, since only symmetric encryption and

decryption are supported.

Optional Origin: The source of the CMK's key material. The default

is “AWS_KMS”. In addition to the default value “AMS_KMS”, the value “EXTERNAL”

may be used to create a CMK without key material so that you can import key

material from your existing key management infrastructure. The use of

EXTERNAL is covered in the following section on Imported Master Keys.

Optional Policy: Policy to attach to the key. If the policy is omitted, the key is

created with the default policy (below) that enables IAM users with AWS KMS

permissions, as well as the root account to manage it.

For details on the policy, see

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html.

https://docs.aws.amazon.com/kms/latest/developerguide/key-policies.html

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 18 of 42

The call returns a response containing an ARN with the key identifier.

arn:aws:kms:<region>:<owningAWSAccountId>:key/<keyId>

If the Origin is AWS_KMS, after the ARN is created, a request to an HSM is made

over an authenticated session to provision an HBK. The HBK is a 256-bit key that

is associated with this CMK key ID. It can be generated only on an HSM and is

designed never to be exported outside of the HSM boundary in cleartext. An HBK

is generated on the HSM and encrypted under the current domain key DK0.

These encrypted HBKs are referred to as EKTs. Although the HSMs can be

configured to use a variety of key wrapping methods, the current implementation

uses the authenticated encryption scheme known as AES-256 in Galois Counter

Mode (GCM) [5]. As part of the authenticated encryption mode, some cleartext

exported key token metadata can be protected.

This is stylistically represented as EKT = Encrypt(DK0, HBK).

Two fundamental forms of protection are provided to your CMKs and the

subsequent HBKs: authorization policies set on your CMKs, and the

cryptographic protections on your associated HBKs. The remaining sections

describe the cryptographic protections and the security of the management

functions in AWS KMS.

In addition to the ARN, a user-friendly name can be associated with the CMK by

creating an alias for the key. Once an alias has been associated with a CMK, the

alias can be used in place of the ARN.

Multiple levels of authorizations surround the use of CMKs. AWS KMS enables

separate authorization policies between the encrypted content and the CMK. For

instance, an AWS KMS envelope-encrypted Amazon Simple Storage Service

(Amazon S3) object inherits the policy on the Amazon S3 bucket. However,

access to the necessary encryption key is determined by the access policy on the

CMK.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 19 of 42

For the latest information about authentication and authorization policies for

AWS KMS, see

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html.

Imported Master Keys
AWS KMS provides a mechanism for importing the cryptographic material used

for an HBK. As described in the section on Customer Master Keys earlier, when

the CreateKey command is used with Origin set to EXTERNAL, a logical CMK is

created that contains no underlying HBK. The cryptographic material must be

imported using the ImportKeyMaterial API call. This feature allows you to

control the key creation and durability of the cryptographic material. It is

recommended that if you use this feature you take significant caution in the

handling and durability of these keys in your environment. For complete details

and recommendations for importing master keys, see

https://docs.aws.amazon.com/kms/latest/developerguide/importing-keys.html.

GetParametersForImport

Prior to importing the key material for an imported master key, you must obtain

the necessary parameters to import the key.

The following is the GetParametersForImport request syntax.

{

 "KeyId": "string",

 "WrappingAlgorithm": "string",

 “WrappingKeySpec” : “string”

}

KeyId: A unique key identifier for a CMK. This value can be a globally unique

identifier, an ARN, or an alias.

WrappingAlgorithm: The algorithm you use when you encrypt your key

material. The valid values are “RSAES_OAEP_SHA256”, “RSAES_OAEP_SHA1”, or

“RSAES_PKCS1_V1_5”. AWS KMS recommends that you use

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html
https://docs.aws.amazon.com/kms/latest/developerguide/importing-keys.html

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 20 of 42

RSAES_OAEP_SHA256. You may have to use another key-wrapping algorithm,

depending on what your key management infrastructure supports.

WrappingKeySpec: The type of wrapping key (public key) to return in the

response. Only RSA 2048-bit public keys are supported. The only valid value is

“RSA_2048”.

This call results in a request from the AWS KMS host to an HSM to generate a

new RSA 2048-bit key pair. This key pair is used to import an HBK for the

specified CMK key ID. The private key is protected and accessible only by an

HSM member of the domain.

A successful call results in the following return values.

{

 "ImportToken": blob,

 "KeyId": "string",

 "PublicKey": blob,

 "ValidTo": number

}

ImportToken: A token that contains metadata to ensure that your key material

is imported correctly. Store this value and send it in a subsequent

ImportKeyMaterial request.

KeyId: The CMK to use when you subsequently import the key material. This is

the same CMK specified in the request.

PublicKey: The public key to use to encrypt your key material. The public key is

encoded as specified in section A.1.1 of PKCS#1 [6], an ASN.1 DER encoding of

the RSAPublicKey. It is the ASN.1 encoding of two integers as an ASN.1 sequence.

ValidTo: The time at which the import token and public key expire. These items

are valid for 24 hours. If you do not use them for a subsequent

ImportKeyMaterial request within 24 hours, you must retrieve new ones. The

import token and public key from the same response must be used together.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 21 of 42

ImportKeyMaterial

The ImportKeyMaterial request imports the necessary cryptographic material

for the HBK. The cryptographic material must be a 256-bit symmetric key. It

must be encrypted using the algorithm specified in WrappingAlgorithm under

the returned public key from a recent GetParametersForImport request.

ImportKeyMaterial takes the following arguments.

{

 "EncryptedKey": blob,

 "ExpirationModel": "string",

 "ImportToken": blob,

 "KeyId": "string",

 "ValidTo": number

}

EncryptedKey: The encrypted key material. Encrypt the key material with the

algorithm that you specified in a previous GetParametersForImport request

and the public key that you received in the response to that request.

ExpirationModel: Specifies whether the key material expires. When this value

is KEY_MATERIAL_EXPIRES, the ValidTo parameter must contain an

expiration date. When this value is KEY_MATERIAL_DOES_NOT_EXPIRE, do not

include the ValidTo parameter. The valid values are

“KEY_MATERIAL_EXPIRES” and “KEY_MATERIAL_DOES_NOT_EXPIRE”.

ImportToken: The import token you received in a previous

GetParametersForImport response. Use the import token from the same

response that contained the public key that you used to encrypt the key material.

KeyId: The CMK to import key material into. The CMK's Origin must be

EXTERNAL.

Optional ValidTo: The time at which the imported key material expires. When

the key material expires, AWS KMS deletes the key material and the CMK

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 22 of 42

becomes unusable. You must omit this parameter when ExpirationModel is set

to KEY_MATERIAL_DOES_NOT_EXPIRE. Otherwise it is required.

On success, the CMK is available for use within AWS KMS until the specified

validity date. Once an imported CMK expires, the EKT is deleted from the

service’s storage layer.

Enable and Disable Key
The ability to enable or disable a CMK is separate from the key lifecycle. This

does not modify the actual state of the key but instead suspends the ability to use

all HBKs that are tied to a CMK. These are simple commands that take just the

CMK key ID.

Figure 6: AWS KMS CMK lifecycle3

Key Deletion
You can delete a CMK and all associated HBKs. This is an inherently destructive

operation, and you should exercise caution when deleting keys from KMS. AWS

KMS enforces a minimal wait time of seven days when deleting CMKs. During

the waiting period the key is placed in a disabled state with a key state indicating

Pending Deletion. All calls to use the key for cryptographic operations will fail.

3 The lifecycle for an EXTERNAL CMK differs. It can be in the state of pending

import, and key rotation is not currently available. Further, the EKT can be

removed without requiring a waiting period by calling
DeleteImportedKeyMaterial.

DeactivatedDeactivated

Enabled key(s)

Deactivated
Deactivated

Key

Generation
Active

Deactivated

Deleted

Rotation

Schedule

key for

deletion
CreateKey

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 23 of 42

CMKs can be deleted using the ScheduleKeyDeletion API call. It takes the

following arguments.

{

 "KeyId": “string”,

 "PendingWindowInDays": number

}

KeyId: The unique identifier for the CMK to delete. To specify this value, use

the unique key ID or the ARN of the CMK.

Optional PendingWindowInDays: The waiting period, specified in number

of days. After the waiting period ends, AWS KMS deletes the CMK and all

associated HBKs. This value is optional. If you include a value, it must be

between 7 and 30, inclusive. If you do not include a value, it defaults to 30.

Rotate Customer Master Key
You can induce a rotation of your CMK. The current system allows you to opt in

to a yearly rotation schedule for your CMK. When a CMK is rotated, a new HBK

is created and marked as the active key for all new requests to protect

information. The current active key is moved to the deactivated state and remains

available for use to decrypt any existing ciphertext values that have been

encrypted using this version of the HBK. AWS KMS does not store any ciphertext

values encrypted under a CMK. As a direct consequence, these ciphertext values

require the deactivated HBK to decrypt. These older ciphertexts can be re-

encrypted to the new HBK by calling the ReEncrypt API call.

You can set up key rotation using a simple API call or from the AWS Management

Console.

Customer Data Operations
After you have established a CMK, it can be used to perform cryptographic

operations. Whenever data is encrypted under a CMK, the resulting object is a

customer ciphertext. The ciphertext contains two sections: an unencrypted

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 24 of 42

header (or cleartext) portion, protected by the authenticated encryption scheme

as the additional authenticated data, and an encrypted portion. The cleartext

portion includes the HBK identifier (HBKID). These two immutable fields of the

ciphertext value help ensure that AWS KMS can decrypt the object in the future.

Generating Data Keys
A request can be made for a specific type of data key or a random key of arbitrary

length through the GenerateDataKey API call. A simplified view of this API

operation is provided here and in other examples. You can find a detailed

description of the full API here

https://docs.aws.amazon.com/kms/latest/APIReference/Welcome.html.

The following is the GenerateDataKey request syntax.

{

 "EncryptionContext": {"string" : "string"},

 "GrantTokens": ["string"],

 "KeyId": "string",

 "KeySpec": "string",

 "NumberOfBytes": "number"

}

The request accepts the following data in JSON format.

Optional EncryptionContext: Name:value pair that contains additional data

to authenticate during the encryption and decryption processes that use the key.

Optional GrantTokens: A list of grant tokens that represent grants that

provide permissions to generate or use a key. For more information on grants

and grant tokens, see

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html.

Optional KeySpec: A value that identifies the encryption algorithm and key

size. Currently this can be AES_128 or AES_256.

https://docs.aws.amazon.com/kms/latest/developerguide/control-access.html

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 25 of 42

Optional NumberOfBytes: An integer that contains the number of bytes to

generate.

AWS KMS, after authenticating the command, acquires the current active EKT

pertaining to the CMK. It passes the EKT along with your provided request and

any encryption context to an HSM over a protected session between the AWS

KMS host and an HSM in the domain.

The HSM does the following:

1. Generates the requested secret material and hold it in volatile memory.

2. Decrypts the EKT matching the key ID of the CMK that is defined in the

request to obtain the active HBK = Decrypt(DKi , EKT).

3. Generates a random nonce N.

4. Derives a 256-bit AES-GCM Data Encryption Key K from HBK and N.

5. Encrypts the secret material ciphertext = Encrypt(K, context, secret).

The ciphertext value is returned to you and is not retained anywhere in the AWS

infrastructure. Without possession of the ciphertext, the encryption context, and

the authorization to use the CMK, the underlying secret cannot be returned.

The GenerateDataKey returns the plaintext secret material and the ciphertext to

you over the secure channel between the AWS KMS host and the HSM. AWS

KMS then sends it to you over the TLS session.

The following is the response syntax.

{

 "CiphertextBlob": "blob",

 "KeyId": "string",

 "Plaintext": "blob"

}

The management of data keys is left to you as the application developer. They

can be rotated at any frequency. Further, the data key itself can be reencrypted to

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 26 of 42

a different CMK or a rotated CMK using the ReEncrypt API operation. Full

details can be found here:

https://docs.aws.amazon.com/kms/latest/APIReference/Welcome.html.

Encrypt
A basic function of AWS KMS is to encrypt an object under a CMK. By design,

AWS KMS provides low latency cryptographic operations on HSMs. Thus there is

a limit of 4 KB on the amount of plaintext that can be encrypted in a direct call to

the encrypt function. The KMS Encryption SDK can be used to encrypt larger

messages. AWS KMS, after authenticating the command, acquires the current

active EKT pertaining to the CMK. It passes the EKT along with the plaintext

provided by you and encryption context to any available HSM in the region over

an authenticated session between the AWS KMS host and an HSM in the domain.

The HSM executes the following:

1. Decrypts the EKT to obtain the HBK = Decrypt(DKi , EKT).

2. Generates a random nonce N.

3. Derives a 256-bit AES-GCM Data Encryption Key K from HBK and N.

4. Encrypts the plaintext ciphertext = Encrypt(K, context, plaintext).

The ciphertext value is returned to you, and neither the plaintext data or

ciphertext is retained anywhere in the AWS infrastructure. Without possession of

the ciphertext and the encryption context, and the authorization to use the CMK,

the underlying plaintext cannot be returned.

Decrypt
A call to AWS KMS to decrypt a ciphertext value accepts an encrypted value

ciphertext and an encryption context. AWS KMS authenticates the call using

AWS signature version 4 signed requests [16] and extracts the HBKID for the

wrapping key from the ciphertext. The HBKID is used to obtain the EKT

required to decrypt the ciphertext, the key ID, and the policy for the key ID. The

request is authorized based on the key policy, grants that may be present, and any

associated IAM policies that reference the key ID. The Decrypt function is

analogous to the encryption function.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 27 of 42

The following is the Decrypt request syntax.

{

 "CiphertextBlob": "blob",

 "EncryptionContext": { "string" : "string" }

 "GrantTokens": ["string"]

}

The following are the request parameters.

CiphertextBlob: Ciphertext including metadata.

Optional EncryptionContext: The encryption context. If this was specified in

the Encrypt function, it must be specified here or the decryption operation fails.

For more information, see

https://docs.aws.amazon.com/kms/latest/developerguide/encrypt-context.html.

Optional GrantTokens: A list of grant tokens that represent grants that

provide permissions to perform decryption.

The ciphertext and the EKT are sent, along with the encryption context, over an

authenticated session to an HSM for decryption.

The HSM executes the following:

1. Decrypts the EKT to obtain the HBK = Decrypt(DKi, EKT).

2. Extracts the nonce N from the ciphertext structure.

3. Regenerates a 256-bit AES-GCM Data Encryption Key K from HBK and N.

4. Decrypts the ciphertext to obtain plaintext = Decrypt(K, context,

ciphertext).

https://docs.aws.amazon.com/kms/latest/developerguide/encrypt-context.html

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 28 of 42

The resulting key ID and plaintext are returned to the AWS KMS host over the

secure session and then back to the calling customer application over a TLS

connection.

The following is the response syntax.

{

 "KeyId": "string",

 "Plaintext": blob

}

If the calling application wants to ensure that the authenticity of the plaintext, it

must verify the key ID returned is the one expected.

Re-Encrypting an Encrypted Object
An existing customer ciphertext encrypted under one CMK can be reencrypted to

another CMK through a re-encrypt command. Reencrypt encrypts data on the

server side with a new CMK without exposing the plaintext of the key on the

client side. The data is first decrypted and then encrypted.

The following is the request syntax.

{

 "CiphertextBlob": "blob",

 "DestinationEncryptionContext": { "string" : "string" },

 "DestinationKeyId": "string",

 "GrantTokens": ["string"],

 "SourceEncryptionContext": { "string" : "string"}

}

The request accepts the following data in JSON format.

CiphertextBlob: Ciphertext of the data to reencrypt.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 29 of 42

Optional DestinationEncryptionContext: Encryption context to be used

when the data is reencrypted.

DestinationKeyId: Key identifier of the key used to reencrypt the data.

Optional GrantTokens: A list of grant tokens that represent grants that

provide permissions to perform decryption.

Optional SourceEncryptionContext: Encryption context used to encrypt

and decrypt the data specified in the CiphertextBlob parameter.

The process combines the decrypt and encrypt operations of the previous

descriptions: The customer ciphertext is decrypted under the initial HBK

referenced by the customer ciphertext to the current HBK under the intended

CMK. When the CMKs used in this command are the same, this command moves

the customer ciphertext from an old version of an HBK to the latest version of an

HBK.

The following is the response syntax.

{

 "CiphertextBlob": blob,

 "KeyId": "string",

 "SourceKeyId": "string"

}

If the calling application wants to ensure the authenticity of the underlying

plaintext, it must verify the SourceKeyId returned is the one expected.

Domains and the Domain State
A cooperative collection of trusted internal AWS KMS entities within an AWS

Region is referred to as a domain. A domain includes a set of trusted entities, a

set of rules, and a set of secret keys, called domain keys. The domain keys are

shared among HSMs that are members of the domain. A domain state consists of

the following fields.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 30 of 42

Field Description

Name A domain name to identify this domain

Members A list of HSMs that are members of the domain, including their public signing key

and public agreement keys

Operators A list of entities, public signing keys, and a role (KMS operator or service host)

that represents the operators of this service

Rules A list of quorum rules for each command that must be satisfied to execute a

command on the HSM

Domain keys A list of domain keys (symmetric keys) currently in use within the domain

The full domain state is available only on the HSM. The domain state is

synchronized between HSM domain members as an exported domain token.

Domain Keys
All the HSMs in a domain share a set of domain keys, {DKr }. These keys are

shared through a domain state export routine. The exported domain state can be

imported into any HSM that is a member of the domain. How this is

accomplished and the additional contents of the domain state are detailed in a

following section on Managing Domain State.

The set of domain keys, {DKr }, always includes one active domain key, and

several deactivated domain keys. Domain keys are rotated daily to ensure that we

comply with Recommendation for Key Management - Part 1 [17]. During domain

key rotation, all existing CMK keys encrypted under the outgoing domain key are

reencrypted under the new active domain key. The active domain key is used to

encrypt any new EKTs. The expired domain keys can be used only to decrypt

previously encrypted EKTs for a number of days equivalent to the number of

recently rotated domain keys.

Exported Domain Tokens
There is a regular need to synchronize state between domain participants. This is

accomplished through exporting the domain state whenever a change is made to

the domain. The domain state is exported as an exported domain token.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 31 of 42

Field Description

Name A domain name to identify this domain.

Members A list of HSMs that are members of the domain, including their signing

and agreement public keys.

Operators A list of entities, public signing keys, and a role that represents the

operators of this service.

Rules A list of quorum rules for each command that must be satisfied to

execute a command on an HSM domain member.

Encrypted domain keys Envelope-encrypted domain keys. The domain keys are encrypted by

the signing member for each of the members listed above, enveloped to

their public agreement key.

Signature A signature on the domain state produced by an HSM, necessarily a

member of the domain that exported the domain state.

The exported domain token forms the fundamental source of trust for entities

operating within the domain.

Managing Domain State
The domain state is managed through quorum-authenticated commands. These

changes include modifying the list of trusted participants in the domain,

modifying the quorum rules for executing HSM commands, and periodically

rotating the domain keys. These commands are authenticated on a per-command

basis as opposed to authenticated session operations; see the API model depicted

in Figure 7.

An HSM, in its initialized and operational state, contains a set of self-generated

asymmetric identity keys, a signing key pair, and a key-establishment key pair.

Through a manual process, a KMS operator can establish an initial domain to be

created on a first HSM in a region. This initial domain consists of a full domain

state as defined in Domains and the domain state section. It is installed through

a join command to each of the defined HSM members in the domain.

After an HSM has joined an initial domain, it is bound to the rules defined in that

domain. These rules govern the commands that use customer cryptographic keys

or make changes to the host or domain state. The authenticated session API

operations that use your cryptographic keys have been defined earlier.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 32 of 42

Figure 9: Domain management

Figure 9 depicts how a domain state gets modified. It consists of four steps:

1. A quorum-based command is sent to an HSM to modify the domain.

2. A new domain state is generated and exported as a new exported domain

token. The state on the HSM is not modified, meaning that the change is

not enacted on the HSM.

3. A second command is sent to each of the HSMs in the newly exported

domain token to update their domain state with the new domain token.

4. The HSMs listed in the new exported domain token can authenticate the

command and the domain token. They can also unpack the domain keys to

update the domain state on all HSMs in the domain.

HSMs do not communicate directly with each other. Instead, a quorum of

operators requests a change to the domain state that results in a new exported

domain token. A service host member of the domain is used to distribute the new

domain state to every HSM in the domain.

The leaving and joining of a domain are done through the HSM management

functions, and the modification of the domain state is done through the domain

management functions.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 33 of 42

Command Description of HSM management

Leave domain Causes an HSM to leave a domain, deleting all remnants and keys of that

domain from memory.

Join domain Causes an HSM to join a new domain or update its current domain state to the

new domain state, using the existing domain as source of the initial set of rules

to authenticate this message.

Command Description of domain management

Create domain Causes a new domain to be created on an HSM. Returns a first domain token

that can be distributed to member HSMs of the domain.

Modify operators Adds or removes operators from the list of authorized operators and their roles

in the domain.

Modify members Adds or removes an HSM from the list of authorized HSMs in the domain.

Modify rules Modifies the set of quorum rules required to execute commands on an HSM.

Rotate domain keys Causes a new domain key to be created and marked as the active domain key.

This moves the existing active key to a deactivated key and removes the oldest

deactivated key from the domain state.

Internal Communication Security
Commands between the service hosts/KMS operators, and the HSMs are secured

through two mechanisms depicted in Figure-7: a quorum-signed request method

and an authenticated session using an HSM-service host protocol.

The quorum-signed commands are designed so that no single operator can

modify the critical security protections provided by the HSMs. The commands

executed over the authenticated sessions help ensure that only authorized service

operators can perform operations involving CMKs. All customer-bound secret

information is secured across the AWS infrastructure.

HSM Security Boundary
The inner security boundary of AWS KMS is the HSM. The HSM has a limited

web-based API and no other active physical interfaces in its operational state. An

operational HSM is provisioned during initialization with the necessary

cryptographic keys to establish its role in the domain. Sensitive cryptographic

materials of the HSM are only stored in volatile memory and erased when the

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 34 of 42

HSM moves out of the operational state, including intended or unintended

shutdowns or resets.

The HSM API operations are authenticated either by individual commands or

over a mutually authenticated confidential session established by a service host.

Figure 7: HSM API operations

Quorum-Signed Commands
Quorum-signed commands are issued by operators to HSMs. This section

describes how quorum-based commands are created, signed, and authenticated.

These rules are fairly simple. For example, command Foo requires two members

from role Bar to be authenticated. There are three steps in the creation and

verification of a quorum-based command. The first step is the initial command

creation; the second is the submission to additional operators to sign; and the

third is the verification and execution.

For the purpose of introducing the concepts, assume that there is an authentic set

of operator’s public keys and roles {QOSs }, and a set of quorum-rules QR = {

Commandi , { Rule{i, t}} where each Rule is a set of roles and minimum number N

{Rolet ,Nt }. For a command to satisfy the quorum rule, the command dataset

must be signed by a set of operators listed in {QOSs } such that they meet one of

the rules listed for that command. As mentioned earlier in this whitepaper, the

set of quorum rules and operators are stored in the domain state and the

exported domain token.

In practice, an initial signer signs the command Sig1 = Sign(dOp1, Command). A

second operator also signs the command Sig2 = Sign(dOp2, Command). The

doubly signed message is sent to an HSM for execution. The HSM performs the

following:

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 35 of 42

1. For each signature, it extracts the signer’s public key from the domain

state and verifies the signature on the command.

2. It verifies that the set of signers satisfies a rule for the command.

Authenticated Sessions
Your key operations are executed between the externally facing AWS KMS hosts

and the HSMs. These commands pertain to the creation and use of cryptographic

keys and secure random number generation. The commands execute over a

session-authenticated channel between the service hosts and the HSMs. In

addition to the need for authenticity, these sessions require confidentiality.

Commands executing over these sessions include the returning of cleartext data

keys and decrypted messages intended for you. To ensure that these sessions

cannot be subverted through man-in-the-middle attacks, sessions are

authenticated.

This protocol performs a mutually authenticated ECDHE key agreement between

the HSM and the service host. The exchange is initiated by the service host and

completed by the HSM. The HSM also returns a session key (SK) encrypted by

the negotiated key and an exported key token that contains the session key. The

exported key token contains a validity period, after which the service host must

renegotiate a session key.

A service host is a member of the domain and has an identity-signing key pair

(dHOSi, QHOSi) and an authentic copy of the HSMs’ identity public keys. It uses

its set of identity-signing keys to securely negotiate a session key that can be used

between the service host and any HSM in the domain. The exported key tokens

have a validity period associated with them, after which a new key must be

negotiated.

Figure 8: HSM-service host operator authenticated sessions

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 36 of 42

The process begins with the service host recognition that it requires a session key

to send and receive sensitive communication flows between itself and an HSM

member of the domain.

1. A service host generates an ECDH ephemeral key-pair (d1, Q1) and signs it

with its identity key Sig1 = Sign(dOS,Q1).

2. The HSM verifies the signature on the received public key using its current

domain token and creates an ECDH ephemeral key-pair (d2, Q2). It then

completes the ECDH-key-exchange according to Recommendation for

Pair-Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography (Revised) [13] to form a negotiated 256-bit AES-GCM key.

The HSM generates a fresh 256-bit AES-GCM session key. It encrypts the

session key with the negotiated key to form the encrypted session key

(ESK). It also encrypts the session key under the domain key as an

exported key token EKT. Finally, it signs a return value with its identity

key pair Sig2 = Sign(dHSK, (Q2, ESK, EKT)).

3. The service host verifies the signature on the received keys using its

current domain token. The service host then completes the ECDH key

exchange according to Recommendation for Pair-Wise Key Establishment

Schemes Using Discrete Logarithm Cryptography (Revised) [13]. It next

decrypts the ESK to obtain the session key SK.

During the validity period in the EKT, the service host can use the negotiated

session key SK to send envelope-encrypted commands to the HSM. Every service-

host-initiated command over this authenticated session includes the EKT. The

HSM responds using the same negotiated session key SK.

Durability Protection
Additional service durability is provided by the use of offline HSMs, multiple

nonvolatile storage of exported domain tokens, and redundant storage of

encrypted CMKs. The offline HSMs are members of the existing domains. With

the exception of not being online and participating in the regular domain

operations, the offline HSMs appear identically in the domain state as the

existing HSM members.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 37 of 42

The durability design is intended to protect all CMKs in a region should AWS

experience a wide-scale loss of either the online HSMs or the set of CMKs stored

within our primary storage system. Imported master keys are not included under

the durability protections afforded other CMKs. In the event of a regionwide

failure in AWS KMS, imported master keys may need to be reimported.

The offline HSMs, and the credentials to access them, are stored in safes within

monitored safe rooms in multiple independent geographical locations. Each safe

requires at least one AWS security officer and one AWS KMS operator, from two

independent teams in AWS, to obtain these materials. The use of these materials

is governed by internal policy requiring a quorum of AWS KMS operators to be

present.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 38 of 42

References
[1] Amazon Web Services, “FIPS 140-2 Non-proprietary Security Policy, AWS Key

Management Service HSM,” version 1.01.01, 18 January 2018,

https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-

program/documents/security-policies/140sp3139.pdf.

[2] NIST Special Publication 800-52 Revision 1, Guidelines for the Selection,

Configuration, and Use of Transport Layer Security (TLS) Implementations, April

2014. https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

52r1.pdf

[3] Recommendation for Random Number Generation Using Deterministic

Random Bit Generators, NIST Special Publication 800-90A Revision 1, June

2015, Available from

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf.

[4] Federal Information Processing Standards Publication 197, Announcing the

Advanced Encryption Standard (AES), November 2001. Available from

http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf.

[5] Recommendation for Block Cipher Modes of Operation: Galois/Counter

Mode (GCM) and GMAC, NIST Special Publication 800-38D, November 2007.

Available from http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-

38D.pdf.

[6] PKCS#1 v2.2: RSA Cryptography Standard, RSA Laboratories, October 2012.

Available from http://www.emc.com/emc-plus/rsa-labs/pkcs/files/h11300-wp-

pkcs-1v2-2-rsa-cryptography-standard.pdf.

[7] Recommendation for Key Derivation Using Pseudorandom Functions, NIST

Special Publication 800-108, October 2009, Available from

https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-108.pdf.

 [8] Federal Information Processing Standards Publication 198-1, The Keyed-

Hash Message Authentication Code (HMAC), July 2008. Available from

http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf.

https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3139.pdf
https://csrc.nist.gov/CSRC/media/projects/cryptographic-module-validation-program/documents/security-policies/140sp3139.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-52r1.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-90Ar1.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://www.emc.com/emc-plus/rsa-labs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf
http://www.emc.com/emc-plus/rsa-labs/pkcs/files/h11300-wp-pkcs-1v2-2-rsa-cryptography-standard.pdf
https://nvlpubs.nist.gov/nistpubs/legacy/sp/nistspecialpublication800-108.pdf
http://csrc.nist.gov/publications/fips/fips198-1/FIPS-198-1_final.pdf

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 39 of 42

[9] Federal Information Processing Standards Publications, FIPS PUB 180-4.

Secure Hash Standard, August 2012. Available from

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf.

[10] Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic

Message Syntax (CMS), Brown, D., Turner, S., Internet Engineering Task Force,

July 2010, http://tools.ietf.org/html/rfc5753/

[11] X9.62-2005: Public Key Cryptography for the Financial Services Industry:

The Elliptic Curve Digital Signature Algorithm (ECDSA), American National

Standards Institute, 2005.

[12] SEC 2: Recommended Elliptic Curve Domain Parameters, Standards for

Efficient Cryptography Group, Version 2.0, 27 January 2010.

http://www.secg.org/sec2-v2.pdf

[13] Recommendation for Pair-Wise Key Establishment Schemes Using Discrete

Logarithm Cryptography (Revised), NIST Special Publication 800-56A Revision

2, May 2013. Available from

http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf.

[14] Amazon Web Services, “What is the AWS Encryption SDK,”

http://docs.aws.amazon.com/encryption-sdk/latest/developer-

guide/introduction.html.

[15] Recommendation for Block Cipher Modes of Operation: The XTS-AES Mode

for Confidentiality on Storage Devices, NIST Special Publication 800-38E,

January 2010. Available from http://csrc.nist.gov/publications/nistpubs/800-

38E/nist-sp-800-38E.pdf.

[16] Amazon Web Services, General Reference (Version 1.0), “Signing AWS API

Request,”

http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html.

[17] Recommendation for Key Management - Part 1: General (Revision 3), NIST

Special Publication 800-57A, January 2016, Available from

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-

57pt1r4.pdf.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
http://tools.ietf.org/html/rfc5753/
http://www.secg.org/sec2-v2.pdf
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-56Ar2.pdf
http://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
http://docs.aws.amazon.com/encryption-sdk/latest/developer-guide/introduction.html
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://csrc.nist.gov/publications/nistpubs/800-38E/nist-sp-800-38E.pdf
http://docs.aws.amazon.com/general/latest/gr/signing_aws_api_requests.html
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-57pt1r4.pdf

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 40 of 42

Appendix - Abbreviations and Keys
This section lists abbreviations and keys referenced throughout the document.

Abbreviations

Abbreviation Definition

AES Advanced Encryption Standard

CDK customer data key

CMK customer master key

CMKID customer master key identifier

DK domain key

ECDH Elliptic Curve Diffie-Hellman

ECDHE Elliptic Curve Diffie-Hellman Ephemeral

ECDSA Elliptic Curve Digital Signature Algorithm

EKT exported key token

ESK encrypted session key

GCM Galois Counter Mode

HBK HSM backing key

HBKID HSM backing key identifier

HSM hardware security module

RSA Rivest Shamir and Adleman (cryptologic)

secp384r1 Standards for Efficient Cryptography prime 384-bit random curve 1

SHA256 Secure Hash Algorithm of digest length 256-bits

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 41 of 42

Keys

Abbreviation Name: Description

HBK HSM backing key: HSM backing keys are 256-bit master keys, from which

specific use keys are derived.

DK Domain key: A domain key is a 256-bit AES-GCM key. It is shared among all

the members of a domain and is used to protect HSM backing keys material

and HSM-service host session keys.

DKEK Domain key encryption key: A domain key encryption Key is an AES-256-

GCM key generated on a host and used for encrypting the current set of

domain keys synchronizing domain state across the HSM hosts.

(dHAK,QHAK) HSM agreement key pair: Every initiated HSM has a locally generated Elliptic

Curve Diffie-Hellman agreement key pair on the curve secp384r1 (NIST-P384).

(dE, QE) Ephemeral agreement key pair: HSM and service hosts generate ephemeral

agreement keys. These are Elliptic Curve Diffie-Hellman keys on the curve

secp384r1 (NIST-P384). These are generated in two use cases: to establish a

host-to-host encryption key to transport domain key encryption keys in domain

tokens and to establish HSM-service host session keys to protect sensitive

communications.

(dHSK,QHSK) HSM signature key pair: Every initiated HSM has a locally generated Elliptic

Curve Digital Signature key pair on the curve secp384r1 (NIST-P384).

(dOS,QOS) Operator signature key pair: Both the service host operators and KMS operators

have an identity signing key used to authenticate itself to other domain

participants.

K Data encryption key: A 256-bit AES-GCM key derived from an HBK using the

NIST SP800-108 KDF in counter mode using HMAC with SHA256.

SK Session key: A session key is created as a result of an authenticated Elliptic

Curve Diffie-Hellman key exchanged between a service host operator and an

HSM. The purpose of the exchange is to secure communication between the

service host and the members of the domain.

Amazon Web Services – AWS KMS Cryptographic Details August 2018

Page 42 of 42

Contributors
The following individuals and organizations contributed to this document:

• Ken Beer, General Manager - KMS, AWS Cryptography

• Richard Moulds, Principal Product Manager – KMS, AWS Cryptography

• Matthew Campagna, Principal Security Engineer - AWS Cryptography

• Raj Copparapu, Sr. Product Manager - KMS, AWS Cryptography

Document Revisions
For the most up to date version of this white paper, please visit:

https://d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf

https://d1.awsstatic.com/whitepapers/KMS-Cryptographic-Details.pdf

	Abstract
	Introduction
	Design Goals

	Background
	Cryptographic Primitives
	Entropy and Random Number Generation
	Encryption
	Key Derivation Functions
	Digital Signatures
	Key Establishment
	Envelope Encryption

	Basic Concepts
	Customer’s Key Hierarchy

	Use Cases
	Amazon EBS Volume Encryption
	Client-side Encryption

	Customer Master Keys
	Imported Master Keys
	GetParametersForImport
	ImportKeyMaterial

	Enable and Disable Key
	Key Deletion
	Rotate Customer Master Key

	Customer Data Operations
	Generating Data Keys
	Encrypt
	Decrypt
	Re-Encrypting an Encrypted Object

	Domains and the Domain State
	Domain Keys
	Exported Domain Tokens

	Managing Domain State
	Internal Communication Security
	HSM Security Boundary
	Quorum-Signed Commands
	Authenticated Sessions

	Durability Protection
	References
	Appendix - Abbreviations and Keys
	Abbreviations
	Keys

	Contributors
	Document Revisions

